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Abstract—A regioselective route is reported, which makes the free 4-OH group of hexopyranoses and derivatives easily and
rapidly available. This protocol shows high efficiency on intermediates, such as 1a, which contain a TIPS protective group at C-6
and necessarily a benzoyl group at C-4. Treatment of 1a with TBAF cleaves the TIPS protecting group and gives rise to an
intramolecular migration of the benzoyl group at C-4 to the less crowded C-6 position. © 2001 Elsevier Science Ltd. All rights

reserved.

In the course of our efforts to synthesize azasugars, we
needed a mild and efficient protocol for the regioselec-
tive preparation of carbohydrate intermediates, such as
2, equipped in the 4-position with a free hydroxyl
group, suitable for the introduction of an azide func-
tion. As is well known, the selective protection—depro-
tection of hydroxyl groups has occupied a key role in
chemical synthesis.! Numerous methods and reagents
have been developed for this purpose, particularly for
carbohydrate chemistry.> Owing to their remarkable
importance in organic chemistry, several methods for
the functionalization of sugars have been continuously
and extensively exploited in this field. A few unequivo-
cal general routes are available for preparing hexo-
pyranoses and pyranosides, O-protected at all
positions, but with one free OH at C-4. A free 4-OH is
traditionally obtained from a pyranosidic 4,6-O-benzyl-
idene acetal by first blocking the 2,3-positions, then
removing the 4,6-acetal, substituting the 6-position (pri-
mary OH) with a sterically demanding substituent, such
as a trityl group® or a diphenyl-zert-butylsilyl group.*
More recently procedures utilize a regioselective open-
ing of cyclic derivatives, such as pyranosidic 4,6-O-ben-
zylidene acetal® or 3 4-stannylidene acetals.®® Usually,
the above classical procedures have involved multiple
steps, which include protection and deprotection strate-
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gies of the sugar moiety, and the use of a reaction
promoter for the regioselective generation of the depro-
tected hydroxy group at C-4, such a Lewis acid as
catalyst or reductive experimental conditions (for
instance, Me;NBH;/AICI; reagent combination). The
yields are variable from poor to good.>

Now we report a practical and regioselective route,
which makes easily and rapidly available the free 4-OH
group of hexopyranoses and derivatives. In fact, the
strategy of the present protocol focuses on the con-
struction of intermediates, such as 1a, which contain a
triisopropylsilyl (TIPS) protective group at C-6 and
necessarily a benzoyl group at C-4, starting from suit-
able monosaccharides. For their formation, the carbo-
hydrates were selectively and quantitatively converted
into the corresponding 6-TIPS derivatives by treatment
with TIPSCI in DMF at rt for 1 h in the presence of
imidazole, then the subsequent benzoylation reaction
led to the starting compounds 1 in very high yields. The
key step of our ‘one-pot’ procedure is the use of a mild
reaction promoter, such as the fluoride anion, which
allowed directly to obtain sugars with the free hydroxyl
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function at C-4, thus avoiding lengthy protocols for the
protection—deprotection combination. In running
experiments, methyl 2,3.4-tri-O-benzoyl-6-triisopropyl-
silyl-a-D-glucopyranoside 1a (0.5 mmol in 5 ml of anhy-
drous THF) was stirred with TBAF 2 M (0.5 mmol) at
0°C under argon; after 15 min, 0.5 mmol of TBAF 2 M
was added again and the mixture was stirred for an
additional 30 min at 0°C. Usual work-up and column
chromatography led to the pure compound 2a'® in
75-80% yield (Scheme 1).

The results showed that the reactions proceeded with
high selectivity, giving the corresponding sugar deriva-
tives with the free OH at C-4 in excellent yields (Table
1). However, methyl 2,3,4-tri-O-benzoyl-6-triisopropyl-

Table 1. Products of the desilylation reaction with TBAF

silyl-B-D-galactopyranoside 1d gave the sugar derivative
3 with the free OH at C-6 in 20-25% yield, besides the
expected 2d (Table 1, entry 3).

The structures of 2d and 3 were confirmed by their
conversion into the corresponding azido derivatives 4'!
(1*C NMR: 6 61.03, CH-N;) and 52 ("*C NMR: ¢
50.93, CH,-N;), respectively, by a well known proce-
dure: first treatment with mesyl chloride and pyridine at
rt for 2 h, then the nucleophilic substitution with NaN;
in DMSO at 100°C for 48 h (Scheme 2).

For additional confirmation of the structure, 2f was
converted into the corresponding 4-keto derivative 6 by
a two-step process, first the reduction of the olefinic

entry substrate product yield (%)
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2 Yields were calculated on pure, chromatographically isolated products. ® Also 20-25% of methyl 2,3,4-tri-O-benzoyl-B-D-galactopyranoside 3

was obtained.
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double bond of 2f with H, and Pd/CaCO; 5% and then Acknowledgements

oxidation the secondary OH group with hypervalent
iodine(II1)/TEMPO reagent combination (Scheme 3).!3
The analytical and spectroscopic data were completely
in agreement with the structure of 6.!*

In terms of regioselectivity and efficiency, our mild
protocol is superior to the above reported conventional
methods, as it uses a tin-free reaction sequence which
makes it possible to extend the procedure to more
reactive carbohydrate derivatives, such as glycals. Gly-
cals are emerging as a major frontier area for organic
chemistry.'>'¢ In addition to their well-appreciated
roles in finding new biologically active compounds,
glycals are cast in a variety of interesting new reactions,
due to their easily manipulated nature.'”

The reaction mechanism should be explained in terms
of a previously unreported domino process, initiated by
the fluoride, which cleaves the TIPS protecting group
and generating a primary C-6 alkoxy anion, which in
turns gives rise to an intramolecular migration of the
benzoyl group from C-4 to the less crowded C-6 posi-
tion. Furthermore, all the results clearly showed that
the reaction is site-selective, since only the C-4 benzoyl
group was involved in the migration, probably due to a
more accessible six-membered transition state. A steric
hindrance due a cis-decaline like transition state should
explain the formation of 3 as a by-product (Table 1,
entry 3).

In conclusion, our method opens new possibilities for
further protecting group manipulations, and it repre-
sents a substantial advance, when compared with
described strategies for obtaining a single free 4-OH in
a pyranosidic ring. We hope this elegant protection
method will see many applications in general carbohy-
drate chemistry and even in natural product synthesis.
Works are in progress in this area.
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